QG-P14 Center of the M3D Hyperbola
M3D stands for “Midpoint 3rd QA-Diagonal”.
Coordinates:
CT-Coordinates QG-P14 in 3 QA-Quadrigons:
- (p (q + r) (-p q + p r + 3 q r + r2) : q (p - r)2 (p + 2 q + r) : (p + q) r (p2 + 3 p q + p r - q r))
- (p (q + r) (p q + q2 - p r + 3 q r) : q (p + r) (p2 + p q + 3 p r -q r) : (p - q)2 r (p + q + 2 r))
- (p (q - r)2 (2 p + q + r) : q (p + r) (-p q + 3 p r+- q r + r2) : (p + q) r (3 p q + q2 - p r + q r))
CT-Coordinates QG-P14 in 3 QL-Quadrigons:
- (-l n (-2 l m2 + l m n + 2 m2 n + l n2 - m n2) : m (l - n) (l2 m - l2 n - 2 l m n - l n2 + m n2) : l n (-l2 m + 2 l m2 + l2 n + l m n - 2 m2 n))
- ( l m (l m2 + l m n - m2 n - 2 l n2 + 2 m n2) : -l m (l2 m - l2 n + l m n + 2 l n2 - 2 m n2) : (l - m) n (l2 m + l m2 - l2 n + 2 l m n - m2 n))
- ( l (m - n) (l m2 - 2 l m n - m2 n + l n2 - m n2) : -m n (-2 l2 m + 2 l2 n + l m n - l n2 + m n2) : m n (2 l2 m - l m2 - 2 l2 n + l m n + m2 n))
CT-Area of QG-P14-Triangle in the QA-environment:
- 16 p q r (p2 + p q + p r - q r) (p q + q2 - p r + q r) (p q - p r -q r - r2) Δ / ((p + q)3 (p + r)3 (q + r)3)
CT-Area of QG-P14-Triangle in the QL-environment: (equals 3 x area QL-Diagonal Triangle)
- 12 l2 m2 n2 Δ / ((-l m + l n + m n) (l m + l n - m n) (l m - l n + m n))
DT-Coordinates QG-P14 in 3 QA-Quadrigons:
- (-p2+r2 : q2 : p2-r2)
- ( p2 : -q2+r2 : q2-r2)
- (-p2+q2 : p2-q2 : r2)
DT-Coordinates QG-P14 in 3 QL-Quadrigons:
- (-1 : (l2-n2)/(2 m2) : 1)
- ((n2-m2)/(2 l2) : 1 : -1)
- ( 1 : -1 : (m2-l2)/(2 n2))
DT-Area of QG-P14-Triangle in the QA-environment:
- -(-p2+q2+r2)(p2-q2+r2) (p2+q2-r2) S / (2 p2 q2 r2)
DT-Area of QG-P14-Triangle in the QL-environment: (equals 3 x area QL-Diagonal Triangle)
- 3 S / 2
Properties:
- QG-P14 lies on these lines:
- QA-P2 (Euler-Poncelet Point) lies on the circumcircle of the triangle formed by the 3 QA-versions of QG-P14.
- QG-P14 lies on the Nine-point Conic QA-Co1. So the vertices of the triangle formed by the 3 QA-versions of QG-P14 lie on the Nine-point Conic QA-Co1.
- QG-P14 is the 4th point of intersection of the two QA-DT circumscribed conics with centers in the midpoint of the diagonals of the Reference Quadrigon (Eckart Schmidt, November 26, 2012).