QG-L3: The QG-Centroids Line
The QG-Centroids Line is the line connecting the 1st and 2nd QG-Quasi Centroids in a Quadrigon. This line is also called the Seebach-Walser Line. See Ref-44.
This line also can be obtained in another way: Qi divides PiPi+1 with ratio r, Ri divides Pi Pi-1 with ratio r. The sides QiRi yield a Wittenbauer type of parallelogram. The locus of diagonal crosspoints of these parallelograms with variable r, will be QG-L3. See Ref-66, QPG#496 and Ref-67.
Coefficients:
CT-Coefficients QG-L3 in 3 QA-Quadrigons:
- (r (p + 2 q + r) : (p - r) (p + q + r) : -p (p + 2 q + r))
- ((q - r) (p + q + r) : r (2 p + q + r) : -q (2 p + q + r))
- (q (p + q + 2 r) : -p (p + q + 2 r) : (p - q) (p + q + r))
CT-Coefficients QG-L3 in 3 QL-Quadrigons:
- (l (m - n) (l m + l n - m n) : m (l - n) (-l m + 2 m2 + l n - m n) : -(l - m) n (l m - l n - m n))
- (l (m - n) (l m + l n - m n) : -m (l - n) (l m - l n + m n) : (-l + m) n (l m - l n - m n + 2 n2))
- (-l (m - n) (2 l2 - l m - l n + m n) : -m (l - n) (l m - l n + m n) : -(l - m) n (l m - l n - m n))
DT-Coefficients QG-L3 in 3 QA-Quadrigons:
- (r2 (-p2 - q2 + r2) : 0 : p2 (-p2 + q2 + r2))
- (0 : r2 (p2 + q2 - r2) : q2 (-p2 + q2 - r2))
- (q2 (p2 - q2 + r2) : p2 (p2 - q2 - r2) : 0)
DT-Coefficients QG-L3 in 3 QL-Quadrigons:
- (l2 - m2 : 0 : m2 - n2)
- (n2 - l2 : m2 - n2 : 0)
- (0 : l2 - m2 : n2 - l2)
Properties: