QA-P33: Centroid of the Orthocenter Quadrangle
QA-P33 is the QA-Centroid of the quadrangle formed by the Orthocenters of the Component Triangles of the Reference Quadrangle.
Coordinates:
1st CT-Coordinate:
+a4 q2 r2 – SB c2 p2 q2 – SC b2 p2 r2 + p q r (3 SB SC (p + q + r) + S2 p)
1st DT-Coordinate:
S2 p4 + 2 a4 q2 r2 - (S2 + 2 SB c2) p2 q2 - (S2 + 2 SC b2) p2 r2
Properties:
- QA-P33 lies on these QA-lines:
- QA-P1.QA-P32.QA-P33 // QA-P2.QA-P4.QA-P6 = QA-L2.
- The QA-Orthopole (QA-Tf3) of QA-P33 is a point on the line QA-P23.QA-P33 (ratio -1:3).
-
The area of the Orthocenter Quadrangle equals the area of the Reference Quadrangle.